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We investigate the singularities and boundedness of a special kind of algebraic varieties so-called stable
minimal models, which are constructed and studied by Birkar in [6, 8]. Given a klt stable minimal
model with bounded relative volume, if we fix the dimension, Iitaka volume, and a DCC set controlling
coefficients, then we show that the singularities of the klt stable minimal model can be controlled
uniformly. Furthermore, we prove that with certain bounded data, stable minimal models with klt
singularities form a bounded family.

1 Introduction
We work over an algebraically closed field k of characteristic zero. Boundedness properties of algebraic
varieties and singularities have been extensively studied in recent years. Regarding algebraic varieties,
such as canonically polarized varieties, polarized Calabi–Yau varieties, and Fano varieties, proving
boundedness properties is the first step of constructing their potential moduli spaces, see [5–9, 32,
33, 35], etc. Moreover, they are also essential tools to prove effective birationalities and effective Iitaka
fibrations of algebraic varieties in higher dimensional birational geometry, see [5, 9, 12, 14, 32], etc. As for
singularities, Xu and Zhuang proved boundedness of K-semistable log Fano cone singularities recently,
and it is a crucial step to prove discreteness of local volumes of klt singularities, see [28, 46–48], etc.

Since the boundedness results of canonically polarized varieties and polarized Calabi–Yau varieties
have been established, it remains to investigate algebraic varieties with intermediate Kodaira dimen-
sion. Recent work related to this aspect can be found in [6, 8, 17, 20, 21, 26, 36, 37, 43], etc. In the absence
of a natural polarization, unlike canonically polarized varieties, we need to add a polarization. A suitable
option is given by Birkar. He defines stable minimal models to be such varieties plus polarization, which
generalizes both KSBA-stable varieties and polarized Calabi–Yau varieties. The main purpose of this
article is to study boundedness properties of stable minimal models with klt singularities. Here we
recall the definition of klt stable minimal models. Note that in general stable minimal models can be
defined in slc case.

Definition 1.1. (Klt stable minimal models, [8]) A klt stable minimal model (X, B), A consists of (X, B)

and an R-divisor A ≥ 0 where

• (X, B) is a projective klt pair,
• KX + B is semi-ample defining a contraction f : X → Z, and
• KX + B + tA is ample for some t > 0, that is, A is ample over Z.
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2 | M. Zhu

Moreover, if in addition KX + B + A is ample, then we call (X, B), A a klt strongly stable minimal model.

For the motivation and examples of stable minimal models, we recommend readers to [8, 42] and
the references therein.

Next we give the definition of families of stable minimal models with certain data.

Definition 1.2. (Families of klt stable minimal models, [8]) Let d ∈ N, u, v ∈ R>0, and � ⊂ R≥0.

(1) A (d, Φ)-klt stable minimal model is a klt stable minimal model (X, B), A such that

• dim X = d, and
• B, A ∈ �, which means that the coefficients of B and A are in �.

Let Sklt(d, �) denote the set of all (d, �)-klt stable minimal models. Denote by SSklt(d, �) ⊂ Sklt(d, �)

the subset of all klt strongly stable minimal models.
(2) A (d, Φ, ≤ u, v)-klt stable minimal model is a (d, �)-klt stable minimal model (X, B), A such that

• vol(A|F) ≤ u, where F is a general fiber of f : X → Z, and
• Ivol(KX + B) = v (see Definition 2.6 for the definition of Iitaka volumes of R-divisors).

Let Sklt(d, �, ≤ u, v) consist of all (d, �, ≤ u, v)-klt stable minimal models. Similarly define (d, Φ, ≤
u, ≤ v)-klt stable minimal model and Sklt(d, �, ≤ u, ≤ v) by replacing the condition “Ivol(KX + B) = v”
with “Ivol(KX + B) ≤ v”.

(3) When 0 is not an accumulation point of � (e.g., when � is DCC), we say that a subset E ⊆ Sklt(d, �)

forms a bounded family if there is a positive integer r such that for each (X, B), A ∈ E , there is a
very ample divisor H on X such that Hd ≤ r and (KX + B + A) · Hd−1 ≤ r.

Given a klt stable minimal model (X, B), A → Z in the family Sklt(d, �, ≤ u, v) with fixed d, �, u, v, we
can prove that the base Z is in a bounded family by Theorem 3.3 and [6, Theorem 1.4], and the general
fiber F is also in a bounded family by [9, Theorem 6.2]. It is natural to ask whether or not the total space
(X, B) belongs to a bounded family.

Conjecture 1.3. Let d ∈ N, u, v ∈ R>0, and � ⊂ R≥0 be a DCC set. If (X, B), A ∈ Sklt(d, �, ≤ u, v), then
the set of such (X, B) forms a bounded family.

Jiao proved that if u, v ∈ Q>0, and � ⊂ Q≥0, then Sklt(d, �, u, v) is a birationally bounded family (cf. [36,
Theorem 1.2]). Note that Sklt(d, �, u, v) is defined similarly to Sklt(d, �, ≤ u, v) by replacing the condition
“vol(A|F) ≤ u” with “vol(A|F) = u”. Moreover, in [26, Theorem 1.4], Hashizume and Hattori proved the
Q-coefficient version of Conjecture 1.3, in the case that vol(A|F) is fixed, and the Iitaka dimension of
stable minimal models is one, that is, (X, B), A → Z ∈ Sklt(d, �, u, v) with dim Z = 1.

In [6, Theorem 1.9], Birkar proved Q-coefficient version of Conjecture 1.3 for klt strongly stable
minimal models (X, B), A with additional conditions that vol(A|F) is fixed, and vol(KX +B+A) is bounded
from above (note that the notation “Sklt(d, �, u, v, < w)” in [6, Theorem 1.9] represents the family of
klt strongly stable minimal models defined in [8] and this article). Therefore, we can expect that [6,
Theorem 1.9] also holds for klt stable minimal models. The following conjecture is a weak version of
Conjecture 1.3.

Conjecture 1.4. Let d ∈ N, u, v, w ∈ R>0, and � ⊂ R≥0 be a DCC set. Let (X, B), A ∈ Sklt(d, �, ≤ u, v)

satisfy that vol(KX + B + A) < w. Then the set of such (X, B), A forms a bounded family.

In [8], Birkar proved boundedness of Q-coefficient slc stable minimal models (X, B), A of dimension
d assuming that the intersection number (KX + B)i · Ad−i is fixed for any 0 ≤ i ≤ d, see [8, Theorem 1.12,
Lemma 4.12]. In light of his result, we prove a special case of Conjecture 1.3.

Theorem 1.5. Let d ∈ N, u, v, w ∈ R>0, and � ⊂ R≥0 be a DCC set. Let (X, B), A ∈ Sklt(d, �, ≤ u, v)

satisfy that the intersection number (KX + B)i · Ad−i ≤ w for any 0 ≤ i ≤ d. Then the set of such
(X, B), A forms a bounded family.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2025/2/rnae293/7958390 by guest on 23 January 2025



Boundedness of Klt Stable Minimal Models | 3

Note that the condition on vol(A|F) can be removed in Theorem 1.5 (see Remark 5.2).
The main difficulty of the proof comes from R-coefficients, which is not dealt in [6, 8]. We will explain

this more precisely in the sketch of proofs. Indeed, Birkar expected that [8, Theoerm 1.12, Theorem 1.14]
could be generalized to the real coefficient case (cf. [8, Subsection 11.11]). Theorem 1.5 confirms that
R-coefficient version of [8, Theoerm 1.12] holds for klt stable minimal models. However, our method
cannot be applied to the slc case.

One of the key steps of the proof of Theorem 1.5 is controlling the singularities of klt stable minimal
models in Sklt(d, �, ≤ u, v) uniformly.

Theorem 1.6. Let d ∈ N, u, v ∈ R>0, and � ⊂ R≥0 be a DCC set. Then there exists ε ∈ R>0 satisfying
the following.

If (X, B), A ∈ Sklt(d, �, ≤ u, v), then (X, B) is ε-lc.

In light of Theorem 1.6, if we restrict ourselves to ε-lc stable minimal models for some fixed ε ∈ R>0,
then in Theorem 1.5 the condition “Ivol(KX + B) = v” can be replaced with “Ivol(KX + B) ≤ v”. However,
in this case, � should be a finite set by technical reasons.

Theorem 1.7. Let d ∈ N, ε, u, v, w ∈ R>0, and � ⊂ R≥0 be a finite set. Let (X, B), A ∈ Sklt(d, �, ≤ u, ≤ v)

satisfy that (X, B) is ε-lc, and the intersection number (KX +B)i ·Ad−i ≤ w for any 0 ≤ i ≤ d. Then
the set of such (X, B), A forms a bounded family.

Sketch of proofs We start with Theorem 1.6. Let (X, B), A ∈ Sklt(d, �, ≤ u, v). Let f : X → Z be a contraction
defined by the semi-ample R-divisor KX + B. First we generalize the effective adjunction formula in [6,
Lemma 7.4] to the R-coefficient case (see Theorem 3.3). The main new tool of proving Theorem 3.3 is
the uniform rational polytope for adjunction formula (cf. [30, Theorem 3.3]).

Next, by Theorem 3.3, there is an adjunction formula KX + B ∼R f ∗(KZ + BZ + MZ) such that
(Z, BZ + MZ) ∈ Fgklt(dim Z, �, v) for some fixed DCC set � ⊂ R≥0 (see Definition 2.13 for the definition
of Fgklt(dim Z, �, v)). Then by [6, Theorem 1.5], there exists a fixed δ ∈ R>0 such that (Z, BZ + MZ) is
generalized δ-lc.

Take a prime divisor D over X. If D is horizontal over Z, then D determines a prime divisor S over the
general fiber F of f : X → Z. Since (F, BF) is a klt log Calabi–Yau pair, and BF ∈ �, then (F, BF) is τ -lc for
some fixed τ ∈ R>0 by [5, Lemma 2.48]. Hence in this case, a(D, X, B) = a(S, F, BF) ≥ τ . On the other hand,
if D is vertical over Z, take resolutions π : X′ → X and μ : Z′ → Z such that f ′ : X′ ��� Z′ is a morphism, D
is a prime divisor on X′ and E = f ′(D) is a prime divisor on Z′. Let KX′ + B′ = π∗(KX + B). By the adjunction
formula, (X′, B′ + δf ′∗E) is lc over the generic point of E, hence a(D, X, B) = a(D, X′, B′) ≥ 1 − δ. Choose
ε = min{τ , δ}, and we finish the proof.

Next we move on to Theorem 1.5. Let (X, B), A ∈ Sklt(d, �, ≤ u, v) satisfy that the intersection numbers
(KX + B)i · Ad−i ≤ w. By Theorem 1.6, we can assume that (X, B) is ε-lc for some fixed ε ∈ R>0. As in the
proof of [8, Theorem 4.1], the key point of the proof is to find a fixed λ ∈ R>0 such that (X, B + λA) is
lc and KX + B + λA is nef, because then (X, B + λ

2 A) is ε
2 -lc, KX + B + λ

2 A is ample, and vol(KX + B + λ
2 A)

is bounded from above by the upper bound of the intersection numbers, hence (X, B), A belongs to a
bounded family by [32, Theorem 1.3, Theorem 1.6].

In the proof of [8, Theorem 4.1], Birkar showed that there is a fixed p ∈ N and an adjunction formula
KX + B ∼R f ∗(KZ + BZ + MZ), such that L := p(KZ + BZ + MZ) is very ample. Then take a general member T
of |L|, and let S be the pullback of T on X. There is a new stable minimal model (S, BS), AS := A|S and a
fibration S → T. The intersection numbers (KS + BS)

i · Ad−1−i
S are controlled by (KX + B)i · Ad−i. Therefore,

by induction (S, BS), AS is bounded. Then using [8, Lemma 4.7], the inversion of adjunction formula, and
the length of extremal rays, we can find a fixed λ ∈ R>0 such that (X, B + λA) is lc, and KX + B + λA
is nef.

However, in R-coefficient case, KZ + BZ + MZ is not a Q-divisor, hence there is no such p ∈ N that
makes p(KZ + BZ + MZ) very ample. An alternative way is to decompose KZ + BZ + MZ uniformly, that is,
KZ + BZ + MZ = ∑l

i=1 ri(KZ + Bi,Z + Mi,Z) such that ri ≥ 0,
∑l

i=1 ri = 1, and there is a fixed p ∈ N such that
Li := p(KZ + Bi,Z + Mi,Z) is very ample for any i (see Theorem 2.16). But if we take a general member T
of |L1|, and denote by (S, BS), AS → T the induced stable minimal model, then there is no way to control
the upper bound of the intersection numbers (KS + BS)

j · Ad−1−j
S for 0 ≤ j ≤ d − 1, which means that

vol(KS + BS + AS) cannot be controlled. Hence we cannot use induction in this way.
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To solve this problem, our new idea is to consider the image of non-lc locus of (X, B+tA) in Z, which we
denote by P(t), that is, P(t) = f (Nlc(X, B+tA)), and then proving the following two statements inductively:

(1) There exists a fixed λk ∈ R>0 such that dim P(λk) ≤ dim Z − k.
(2) There exists a fixed μk ∈ R>0 such that KX + B + μkA is nef in dimension k − 1 over Z (see

Definition 2.17 for the definition of relatively nefness).

Let F be the general fiber of X → Z, and (F, BF), AF be the restriction of (X, B), A on F. Then (F, BF), AF is
a polarized log Calabi–Yau pair. By [6, Theorem 6.2], (F, BF), AF is bounded. By [7, Theorem 1.8], there is a
fixed λ1 ∈ R>0 such that (F, BF + λ1AF) is lc. By the inversion of adjunction [24, 40], dim P(λ1) ≤ dim Z − 1.
Since KX + B is semi-ample and A is ample over Z, automatically KX + B + A is nef in dimension 0 over
Z. Therefore, the two statements hold for k = 1.

When k ≥ 1, assume there is a fixed λk ∈ R>0 such that dim P(λk) ≤ dim Z − k. Let T be a general
complete intersection of dimension k, and S be the pullback of T on X. The adjunction formula gives a
pair (S, BS +λkAS) on S. By [16, Theorem 1.2, Corollary 1.4], we have Nlc(S, BS +λkAS) = S∩Nlc(X, B+λkA).
Since dim P(λk) ≤ dim Z − k, we deduce that Nlc(S, BS + λkAS) is contained in finitely many fibers of
S → T. By the standard method of using the length of extremal rays, there is a fixed μk+1 ∈ R>0, such
that KS + BS + μk+1AS is globally nef. Thus KX + B + μk+1A is nef over Z in dimension k.

On the other hand, assume there is a fixed μk ∈ R>0 such that KX + B + μkA is nef in dimension
k − 1 over Z. First by Theorem 3.3, we construct an adjunction formula KX + B ∼R f ∗(KZ + BZ + MZ), and
decompose KZ + BZ + MZ uniformly, that is, KZ + BZ + MZ = ∑l

i=1 ri(KZ + Bi,Z + Mi,Z) such that ri ≥ 0,∑l
i=1 ri = 1, and there is a fixed p ∈ N such that Li := p(KZ + Bi,Z + Mi,Z) is very ample for any i. Then there

exists a fixed m ∈ N such that m(KZ + BZ + MZ) − L1 is nef. Take T as a general complete intersection of
dimension k − 1 cut by hypersurfaces in |L1|. Let S be the pullback of T on X. The adjunction formula
gives a pair (S, BS + μkAS). By the definition of relative nefness in dimension k − 1, KS + BS + μkAS is
nef. Decreasing μk, we can assume that KS + BS + μkAS is ample. Therefore, (S, BS), μkAS is a strongly
stable minimal model. Although the intersection numbers (KS + BS)

i · Adim S−i
S are still not controlled,

we can control vol(KS + BS + μkAS), because m(KZ + BZ + MZ) − L1 is nef, and KX + B + μkA is nef in
dimension k − 1 over Z. Therefore, by some calculations, we prove that Ivol(KS + BS) is in a fixed finite
set and vol(KS +BS +μkAS) is bounded from above. By the lower bound of lc thresholds in strongly stable
minimal models (see Theorem 5.1), there is a fixed λk ∈ R>0 such that (S, BS +λkAS) is lc. By the inversion
of adjunction [24, 40], we conclude that P(λk) ∩ T = ∅. Note that T is a general complete intersection of
dimension k − 1, hence dim P(λk) ≤ s − k.

Applying induction on k, we can find such λ that (X, B + λA) is lc outside from finitely many fibers
of f : X → Z and KX + B + λA is nef. Applying the standard method of using the length of extremal
rays again, decreasing λ, we conclude that (X, B + λA) is globally lc. Therefore, we finish the proof of
Theorem 1.5.

At last, we give a brief sketch of the proof of Theorem 1.7. Let (X, B), A ∈ S(d, �, ≤ u, ≤ v) satisfy that
the intersection numbers (KX +B)i ·Ad−i ≤ w. Let f : X → Z be the contraction defined by the semi-ample
R-divisor KX + B. By Theorem 3.2, we construct an adjunction formula KX + B ∼R f ∗(KZ + BZ + MZ) such
that (Z, BZ + MZ) ∈ Fgklt(dim Z, J, ≤ v) for some fixed finite set J ⊂ R≥0, and (Z, BZ + MZ) is generalized δ-lc
for some fixed δ ∈ R>0. Then applying the proof of [19, Theorem 1.3], we show that vol(KZ + BZ + MZ) is
in a fixed finite set (see Lemma 5.3). Thus Theorem 1.7 is a consequence of Theorem 1.5.

2 Preliminaries
2.1 Divisors

Definition 2.1 (ACC sets and DCC sets). Let � ⊂ R≥0. We say � satisfies the ascending chain condition
(ACC) if it does not contain an infinite strictly increasing sequence. We say � satisfies the
descending chain condition (DCC) if it does not contain an infinite strictly decreasing sequence.

Definition 2.2 (Coefficients of divisors). Let δ ∈ R>0, � ⊂ R≥0, and D be an R-divisor on a normal
variety X. Write D = ∑

aiDi where Di’s are different Weil divisors on X. We denote D ∈ � if
ai ∈ � for any i, and denote D ≥ δ (resp. D ≤ δ) if ai ≥ δ (resp. ai ≤ δ) for any i.

Definition 2.3 (Contractions). We say a projective morphism f : X → Z between normal varieties
is a contraction if f∗OX = OZ. In particular, f has connected fibers.
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Definition 2.4 (Horizontal part and vertical part of divisors). Let f : X → Z be a contraction
between normal varieties. Let D be an R-divisor on X. We say that D is vertical over Z if f (Supp D)

is a proper subset of Z. We say that D is horizontal over Z if the induced map Supp D → Z is
dominant.

Given an R-divisor D on X, there is a unique decomposition D = Dh + Dv such that

• Supp Dh, Supp Dv have no common components,
• every component of Supp Dh is horizontal over Z, and
• Dv is vertical over Z.

We call Dh the horizontal part of D and Dv the vertical part of D with respect to f : X → Z.

Definition 2.5 (Invariant Iitaka dimensions, [15, Definition 2.2.1]). Let D be an R-divisor on a
projective normal variety X. We define the invariant Iitaka dimension κι(X, D) as follows. If
|D|R 
= ∅, let κι(X, D) = κ(X, D′) for some R-divisor D′ ∈ |D|R. Here, the right hand side is the
usual Iitaka dimension of D′. Note that in this case κι(X, D) does not depend on the choice of D′

by [15, Corollary 2.1.4]. If |N|R = ∅, let κι(X, D) = −∞.

Next we generalize the definition of Iitaka volume in [43] to R-divisors. It is also called pseudo-volume
in [15].

Definition 2.6. (Iitaka volumes of R-divisors, [43, Definition 1.1], see also [15, Definition 2.1.1]) Let
D be an R-divisor on a projective normal variety X with invariant Iitaka dimension κι(D). We
define Iitaka volume Ivol(D) of D as follows. If κι(D) ≥ 0, let D′ be an element of |D|R, and then

Ivol(D) := lim sup
m→∞

h0(�mD′�)
mκι(D)/κι(D)!

.

Note that in this case Ivol(D) does not depend on the choice of D′ by [15, Corollary 2.1.4]. If
κι(D) = −∞, then let Ivol(D) = 0.

If f : X → Z is a contraction between two normal varieties and D ∼R f ∗L for some big R-divisor L on Z,
then Ivol(D) = vol(L).

Definition 2.7 (b-divisors). Let X be a normal variety. A b-divisor M is a collection of R-divisors MY

on Y for each birational contraction Y → X from a normal variety and satisfies the following:
if Y′ → Y → X are birational contractions, then the pushdown of MY′ on Y is MY.

We say a b-divisor M is b-R-Cartier if there is a birational contraction Y → X such that

• MY is R-Cartier, and
• if Y′ → Y is a birational contraction, then MY′ is the pullback of MY.

In this case, we say that the b-R-Cartier divisor M descends on Y and is represented by MY. Note
that the representation is not unique, if Y′ → X is another birational contraction and MY′ is an
R-Cartier divisor on Y′, then MY and MY′ define the same b-R-Cartier b-divisor if the pullbacks
of MY and MY′ to a common resolution of Y and Y′ are the same.

2.2 (Generalized) Pairs and Singularities
Definition 2.8 (Pairs and Singularities). Let X be a normal quasi-projective variety and B be an

R-divisor on X. We say that (X, B) is a sub-pair if KX + B is R-Cartier. If in addition B ≥ 0, then
(X, B) is a pair.

Let D be a prime divisor over X, that is, there is a birational model over X such that D is a prime
divisor on this model. Let W → X be a log resolution of a sub-pair (X, B) so that D is a prime
divisor on W. Let KW+BW be the pullback of KX+B. Define the log discrepancy of the prime divisor
D as 1 − μDBW, where μDBW means the coefficient of D in BW. We denote the log discrepancy of
D with respect to (X, B) as a(D, X, B).
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6 | M. Zhu

We say that a sub-pair (X, B) is sub-klt (resp. sub-lc, sub-ε-lc) if a(D, X, B) > 0 (resp. a(D, X, B) ≥ 0,
a(D, X, B) ≥ ε) for every prime divisor D over X. If (X, B) is a pair, then we remove the sub and
say the pair is klt (resp. lc, ε-lc).

Let (X, B) be a sub-pair. A non-klt place (resp. non-lc place) is a prime divisor D over X such that
a(D, X, B) ≤ 0 (resp. a(D, X, B) < 0). A non-klt center (resp. non-lc center) is the image of a non-klt
place (resp. non-lc place). The non-klt locus (resp. non-lc locus) of (X, B) is the union of all non-klt
places (resp. non-lc places) of (X, B) and denoted as Nklt(X, B) (resp. Nlc(X, B)).

Definition 2.9 (Generalized pairs and Singularities, [12, Definition 1.4, Definition 4.1]). A general-
ized sub-pair consists of

• a normal variety X equipped with a projective morphism X → Z,
• an R-divisor B on X, and
• a b-R-Cartier b-divisor over X, represented by a projective birational morphism f : X′ → X and an

R-Cartier R-divisor M′ on X′

such that M′ is nef over Z and KX + B + M is R-Cartier, where M := f∗M′. If in addition B ≥ 0, then
(X, B + M) is a generalized pair. Since a b-R-Cartier b-divisor is defined birationally, in practice
we will often replace X′ with a higher model and replace M′ with its pullback. In this article,
we omit Z but say the generalized pair is projective when Z is a point.

Let D be a prime divisor over X. Replace X′ with a log resolution of (X, B) such that D is a prime
divisor on X′. We can write

KX′ + B′ + M′ = π∗(KX + B + M).

Then we define the generalized log discrepancy of D to be a(D, X, B + M) = 1 − μDB′.
We say that (X, B + M) is generalized klt (resp. generalized lc, generalized ε-lc) if a(D, X, B + M) > 0 (resp.

a(D, X, B + M) ≥ 0, a(D, X, B + M) ≥ ε) for every prime divisor D over X.

2.3 Adjunction formulas for fiber spaces
We recall the construction of adjunction formulas for fiber spaces based on [1, 2, 39]. Let (X, B) be a
projective sub-pair and let f : X → Z be a contraction between quasi-projective normal varieties with
dim Z > 0 such that (X, B) is sub-lc near the generic fiber of f and KX + B ∼R 0/Z.

Fix a prime divisor D on Z and let tD be the lc threshold of f ∗D with respect to (X, B) over the generic
point of D, that is, tD is the largest number so that (X, B+tDf ∗D) is sub-lc over the generic point of D. Now
let bD = 1 − tD and by basic argument there are finitely many prime divisors D′ on Z such that bD′ 
= 0.
Hence we can define BZ = ∑

bDD, where the sum runs over all the prime divisors on Z.
Since KX + B ∼R 0/Z, there is an R-Cartier R-divisor LZ on Z such that KX + B ∼R f ∗LZ. Let MZ =

LZ − (KZ + BZ) and we have the following adjunction formula

KX + B ∼R f ∗(KZ + BZ + MZ).

We call BZ the discriminant divisor and MZ the moduli divisor of (X, B) with respect to f : X → Z. Note that
BZ is uniquely determined but MZ is determined only up to R-linear equivalence.

Take a commutative diagram

such that μ and π are birational contractions. Let KX′ + B′ be the pullback of KX + B on X′ and similarly
we can define a discriminant divisor BZ′ and LZ′ = μ∗LZ gives a moduli divisor MZ′ so that

KX′ + B′ ∼R f ′∗(KZ′ + BZ′ + MZ′ ).
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Boundedness of Klt Stable Minimal Models | 7

It is easy to see that BZ is the pushdown of BZ′ and MZ is the pushdown of MZ′ . Therefore, BZ and MZ can
be regarded as b-divisors.

The following lemma shows that when (X, B) is lc over the generic point of Z, (Z, BZ + MZ) is a
generalized pair.

Lemma 2.10. (Adjunction formula for R-coefficients, [38, Theorem 2.23]) With the above notation
and assumptions, suppose that (X, B) is lc over the generic point of Z. Then MZ′ is nef on some
high resolution Z′ → Z, and (X, B + M) is a generalized pair.

Here we recall the McKernan–Shokurov type conjecture, which was proved by Birkar recently.

Lemma 2.11. ([10, Theorem 1.8]) Let d ∈ N, and u, v, ε ∈ R>0. Then there exists δ ∈ R>0 depending
only on d, u, v, ε satisfying the following.

Assume that

• (X, B) is an ε-lc pair,
• f : X → Z is a contraction and dim X − dim Z ≤ d,
• KX + B ∼R 0/Z,
• A is an effective R-divisor on X such that A ≥ u, and
• 0 < vol(A|F) < v for the general fibers F of f .

Then the generalized pair (Z, BZ + MZ) given by the adjunction formula

KX + B ∼R f ∗(KZ + BZ + MZ)

is generalized δ-lc.

Proof. Since A ≥ u, we conclude that

0 < vol(Ared|F) ≤ vol(
1
u

A|F) ≤ v
udim F

where F is a general fiber of f .
Using approximation, we can write B = ∑l

i=1 riBi such that

•
∑l

i=1 ri = 1 and ri ≥ 0 for any i,
• ri’s are Q-linear independent, and
• (X, Bi) is an ε

2 -lc Q-pair for any i.

Moreover, we have KX + Bi ∼Q 0/Z by [29, Lemma 5.3].
Let D be a prime divisor over Z. Take a commutative diagram

such that μ and π are birational contractions and D is a prime divisor on Z′. Write KX′ + B′ = π∗(KX + B)

and KX′ + B′
i = π∗(KX + Bi). Let tD (resp. ti,D) be the lc threshold of f ′∗D with respect to (X′, B′) (resp. (X′, B′

i))
over the generic point ηD of D. Since (X′, B′

i + ti,Df ′∗D) is sub-lc over ηD, (X′, B′ +∑l
i=1 riti,Df ′∗D) is also sub-lc

over ηD, hence tD ≥ ∑l
i=1 riti,D.

Applying [10, Theorem 1.8] to (X, Bi), Ared, we deduce that there exists δ ∈ R>0 depending only on
d, u, v, ε such that ti,D ≥ δ. Therefore,

tD ≥
l∑

i=1

riti,D ≥
l∑

i=1

riδ = δ.

Hence the discriminant b-divisor BZ has coefficients ≤ 1 − δ and (Z, BZ + MZ) is generalized δ-lc. �
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8 | M. Zhu

2.4 Bounded families
Definition 2.12 (Bounded families of couples and pairs). A couple consists of a projective normal

variety X and a reduced divisor D on X. We say that two couples (X, D) and (X′, D′) are isomorphic
if there is an isomorphism X → X′ mapping D onto D′.

Let P be a set of couples. Assume that

• there exist finitely many projective morphisms Vi → Ti of varieties,
• Ci is a reduced divisor on Vi, and
• for each (X, D) ∈ P there exists an i, a closed point t ∈ Ti and an isomorphism φ : Vi

t → X such that
(Vi

t, Ci
t) is a couple and φ∗Ci

t ≥ D.

Then we say that P is bounded. This is equivalent to say that there is a positive integer r such
that for each (X, D) ∈ P , we can find a very ample divisor A on X such that Adim X ≤ r and
D · Adim X−1 ≤ r (cf. [5, Lemma 2.20]).

A set of projective pairs (X, B) is said to be bounded if the set of (X, Supp B) forms a bounded family
of couples.

2.5 Families of generalized pairs
Definition 2.13 ([6, Definition 1.1]). Let d ∈ N, � ⊂ R≥0, and v ∈ R>0.

(1) Let Fgklt(d, �) be the set of projective generalized pairs (X, B+M) with data X′ → X and M′ such that

• (X, B + M) is generalized klt of dimension d,
• B ∈ �,
• M′ = ∑

μiM′
i where M′

i is Cartier nef and μi ∈ � for any i, and
• KX + B + M is ample.

(2) Let

Fgklt(d, �, v) ⊆ Fgklt(d, �)

consist of those (X, B + M) such that vol(KX + B + M) = v. Similarly, let

Fgklt(d, �, ≤ v) ⊆ Fgklt(d, �)

consist of those (X, B + M) such that vol(KX + B + M) ≤ v.

Here we give a lemma to show that if (X, B + M) ∈ Fgklt(d, �, v), then we can control the Cartier index
of any Q-Cartier Weil divisor on X.

Lemma 2.14. Let d ∈ N, v ∈ R>0, and � ⊂ R≥0 be a DCC set. Then there exists N ∈ N depending
only on d, �, v such that for any (X, B + M) ∈ Fgklt(d, �, v) and any Q-Cartier Weil divisor D on X,
the Cartier index of D divides N.

Proof. Let (X, B + M) ∈ Fgklt(d, �, v) and D be a Q-Cartier Weil divisor on X. By Step 7 of the proof of
[6, Theorem 1.4], there is a boundary � on X such that (X, �) is ε-lc for some positive real number ε

depending only on d, �, v, and (X, �) belongs to a log bounded family P . By [28, Theorem 1.10], There is
a positive integer N depending only on ε,P , hence depending only on d, �, v, such that the Cartier index
of D divides N. �

2.6 Decomposition of R-coefficient generalized pairs in Fgklt(d, �, v)

In this subsection, we decompose an R-coefficient generalized pair (X, B + M) ∈ Fgklt(d, �, v) into Q-
coefficient generalized pairs (X, Bi + Mi) such that a bounded multiple of KX + Bi + Mi is very ample.

Lemma 2.15. Let d ∈ N. Then there exists m ∈ N depending only on d satisfying the following.
Assume that
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Boundedness of Klt Stable Minimal Models | 9

• (X, B + M) is a generalized klt pair of dimension d,
• L is an ample Cartier divisor on X, and
• L − KX − B − M is nef and big.

Then mL is very ample.

Proof. By the proof of [45, Lemma 2.4], there exists an effective R-divisor � such that (X, �) is klt and
L − KX − � is ample. Then by effective base point free theorem [41, Theorem 1.1], |mL| is base point free
for some positive integer m depending only on d. By effective very ampleness lemma [23, Lemma 7.1],
replacing m with a bounded multiple, we conclude that mL is very ample. �

Theorem 2.16. Let d ∈ N, v ∈ R>0, and I ⊂ R≥0 be a finite set. Then there exists a finite set J ⊂ R>0

and p ∈ N depending only on d, I, v satisfying the following.
If (X, B + M) ∈ Fgklt(d, I, v), then we can decompose KX + B + M as follows:

KX + B + M =
l∑

i=1

ri(KX + Bi + Mi)

such that

•
∑l

i=1 ri = 1 and ri ∈ J for any i,
• (X, Bi + Mi) is a generalized klt pair with nef part M′

i on some high resolution X′ → X for any i, and
• p(KX + Bi + Mi) is very ample and pM′

i is Cartier nef for any i.

Proof. Pick a generalized pair (X, B + M) ∈ Fgklt(d, I, v) with data X′ → X and M′. By [13, Theorem 3.15] we
can write

KX + B + M =
l∑

i=1

ri(KX + Bi + Mi)

such that

•
∑l

i=1 ri = 1 and ri ∈ J, where J ⊂ R>0 is a finite set depending only on d, I,
• (X, Bi + Mi) is a generalized klt pair with nef part M′

i on X′ for any i,
• M′ = ∑l

i=1 riM′
i, and

• there exists a positive integer p depending only on d, I such that p(KX + Bi + Mi) is integral, and pM′
i

is Cartier nef for any i.

Note that l ≤ N := 1
min J , because

∑l
i=1 ri = 1. By Lemma 2.14, replacing p with a bounded multiple we

can assume that p(KX + Bi + Mi) is Cartier. Now p depends on d, I, v.
Consider the set

� := {
h∑

i=1

νini

p
|ni ≥ −2dp, ni ∈ Z, νi ∈ J, h ≤ N}.

It is easy to see that � is a DCC set, hence we can take δ := min{α > 0|α ∈ �}.
If KX +Bi +Mi is not nef for some i, let R be a (KX +Bi +Mi)-negative extremal ray. Let C be an extremal

curve of R, which means that there exists an ample divisor H such that

H · C = min{H · �| [�] ∈ R}.

By the length of extremal ray for generalized pairs [27, Proposition 3.13, Lemma 3.5],

(KX + Bi + Mi) · C ≥ −2d
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10 | M. Zhu

for 1 ≤ i ≤ l. Since p(KX + Bi + Mi) is Cartier, we deduce that p(KX + Bi + Mi) · C is an integer in [−2dp, ∞).
Since KX + B + M is ample and

(KX + B + M) · C =
l∑

i=1

ri(KX + Bi + Mi) · C

=
l∑

i=1

ri

p
(p(KX + Bi + Mi) · C) ∈ �,

hence (KX + B + M) · C ≥ δ. Therefore,

(
δ

2d + δ
(KX + Bi + Mi) + 2d

2d + δ
(KX + B + M)

)
· C ≥ 0.

This argument implies that

δ

2d + δ
(KX + Bi + Mi) + 2d

2d + δ
(KX + B + M)

is nef. Now we take

KX + B̃i + M̃i := 4d + δ

4d + 2δ
(KX + B + M) + δ

4d + 2δ
(KX + Bi + Mi),

then

KX + B + M =
l∑

i=1

ri(KX + B̃i + M̃i).

Since KX + B + M is ample, we conclude that KX + B̃i + M̃i is also ample. Consider the convex hull H
spanned by KX + B̃i + M̃i, that is,

H := {
l∑

i=1

λi(KX + B̃i + M̃i)|λi ≥ 0,
l∑

i=1

λi = 1}.

Since KX + B + M is an interior point of H, we can choose KX + Bi + Mi ∈ H such that

• KX + B + M = ∑l
i=1 ri(KX + Bi + Mi), where ri belongs to a finite set J ⊂ R>0 depending only on J, d, δ,

hence depending only on d, I, v,
• (X, Bi + Mi) is a generalized klt pair with nef part M

′
i on X′ for each i,

• (KX + Bi + Mi) is ample for each i, and
• there exists a positive integer p depending only on J, d, δ, p, hence depending only on d, I, v such that

p(KX + Bi + Mi) is integral and pM
′
i is Cartier nef for any i.

By Lemma 2.14, replacing p with a bounded multiple we can assume that p(KX + Bi + Mi) is Cartier.
By Lemma 2.15, replacing p again with a bounded multiple we can assume that p(KX + Bi + Mi) is very
ample. Now replace ri with ri, J with J, (X, Bi + Mi) with (X, Bi + Mi), and p with p, and then we finish the
proof. �

2.7 Relative nefness
Definition 2.17. Let s, k be integers such that 0 ≤ k ≤ s. Let f : X → Z be a contraction between

projective normal varieties with dim Z = s. Let (X, B) be a pair. We say KX + B is nef in dimension
k over Z, if for any very ample divisors H1, · · · , Hs−k on Z, the following is satisfied.
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Boundedness of Klt Stable Minimal Models | 11

Let Li be a general member of |Hi| and Ri = f−1Li. Take S = ∩s−k
i=1 Ri and write

KS + BS = (KX + B +
s−k∑
i=1

Ri)|S,

then KS + BS is nef.
Note that if KX + B is nef over Z, then KX + B is nef in dimension 0 over Z.

The following lemma will be used in the proof of Theorem 1.5.

Lemma 2.18. Let d, s, k be integers such that 0 ≤ k ≤ s ≤ d. Assume that

• f : X → Z is a contraction between projective normal varieties with dim X = d and dim Z = s,
• (X, B) is a pair and KX + B is nef in dimension k over Z,
• H1, · · · , Hs−k are very ample divisors on Z, and
• N is a nef R-divisor on X.

Then

(KX + B + N +
s−k∑
i=1

f ∗Hi)
d−s+k · f ∗H1 · . . . · f ∗Hs−k ≥ 0.

Proof. By definition, if we take Li as a general member of |Hi|, Ri = f−1Li and S = ∩s−k
i=1 Ri, then

KS + BS = (KX + B +
s−k∑
i=1

Ri)|S

is nef, hence KS + BS + NS is nef, where NS = N|S. Therefore,

(KX + B + N +
s−k∑
i=1

f ∗Hi)
d−s+k · f ∗H1 · . . . · f ∗Hs−k

=(KX + B + N +
s−k∑
i=1

f ∗Li)
d−s+k · f ∗L1 · . . . · f ∗Ls−k

=(KX + B + N +
s−k∑
i=1

Ri)
d−s+k · R1 · . . . · Rs−k

=(KS + BS + NS)
d−s+k ≥ 0.

�

3 Effective adjunction formula with real coefficients
In this section we extend the effective adjunction formula [6, Lemma 7.4] to the real coefficients case.
The main new tool is uniform rational polytopes for canonical bundle formulas developed in [30]. The
effective adjunction formula is one of the main ingredients in the proof of Theorem 1.5 and Theorem 1.6.

3.1 Cartier index of moduli divisors
Given q ∈ N and two R-divisors C, D on a normal variety X, if qC ∼ qD, then we write C ∼q D.

Lemma 3.1. Let d, q ∈ N, u ∈ R>0 and � ⊂ R≥0 be a DCC set. Then there exists p ∈ N depending
only on d, q, u, � satisfying the following. Assume that
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12 | M. Zhu

• (X, B) is a projective lc pair of dimension d,
• f : X → Z is a contraction with KX + B ∼Q 0/Z,
• we have an adjunction formula

KX + B ∼q f ∗(KZ + BZ + MZ),

• A ∈ � is an effective R-divisor on X,
• over some non-empty open subset U ⊆ Z: (X, B + tA) is lc for some t > 0, and A is relatively semi-

ample, and
• for the general fiber F of f , we have 0 < vol(A|F) ≤ u.

Then pMZ′ is Cartier on some high resolution Z′ → Z.

Proof. We follow the proof of [6, Lemma 7.4].

Step 1. Take a resolution Z′ → Z so that M descends to Z′, and a log resolution W → X of (X, B) such
that W ��� Z′ is a morphism. Let �W be the sum of the horizontal/Z′ part of reduced exceptional
divisors and the birational transform of the horizontal/Z part Bh of B. After finitely many blow ups
and changing �W accordingly, we can assume that every non-klt center of (W, �W) is horizontal
over Z′.
Run an MMP on KW +�W over X with scaling of some ample divisor. Since over the generic point
ηZ of Z, KW + �W is the sum of the pullback of KX + Bh and an effective exceptional divisor, the
MMP terminates over ηZ by [4, Theorem 1.8]. Thus we get a model (V, �V) on which KV +�V ∼Q 0
over ηZ, and hence over the generic point ηZ′ of Z′. Applying [4, Theorem 1.4] or [34, Theorem 1.1],
we can run an MMP on KW + �W over Z′ ending with a good minimal model. Replacing V with
the good minimal model of (W, �W) over Z′, we can assume that KV + �V is semi-ample over Z′

and induces a contraction f ′ : V → Z′′/Z′.
Step 2. Take a common resolution π : Y → X and π ′ : Y → V. Then

PY := π ′∗(KV + �V) − π∗(KX + B)

is vertical over Z′′. In addition, since KX + B ∼Q 0/Z and KV + �V ∼Q 0/Z′′, we conclude that
PY ∼Q 0/Z′′, which implies that PY is the pullback of an Q-Cartier Q-divisor PZ′′ by [14, Lemma
2.5]. The adjunction formula

KX + B ∼q f ∗(KZ + BZ + MZ)

induces the following adjunction formula

(∗) KV + �V ∼q f ′∗(KZ′′ + BZ′′ + PZ′′ + MZ′′ ),

where KZ′′ + BZ′′ + MZ′′ is the pullback of KZ + BZ + MZ on Z′′. From (∗) we see that the discriminant
divisor �Z′′ of (V, �V) over Z′′ is BZ′′ +PZ′′ and the moduli divisor of (X, B) → Z on Z′′ coincides with
the moduli divisor of (V, �V) → Z′′.

Step 3. We claim that there exists p ∈ N depending only on d, q, u, � such that pMZ′′ is integral. Then pMZ′

is integral and hence Cartier because Z′ is smooth.
As in the fifth paragraph of the proof of [6, Lemma 7.4], we can reduce to the case where Z

and Z′′ are curves. Then the claim follows from [6, Lemma 7.3]. Note that in [6, Lemma 7.3], A is
an effective integral divisor on X. In our case, the coefficients of A are in a DCC set of positive
real numbers. The proof of [6, Lemma 7.3] can still be applied with some slight changes. In Step
2 of the proof of [6, Lemma 7.3], replace [34, Theorem 1.1] with [25, Theorem 1.2], which is an
R-version of [34, Theorem 1.1], and in Step 5, replace [9, Theorem 1.7] with [9, Theorem 6.4]. �

3.2 Finite coefficients case
We first give an effective adjunction formula in the case that the coefficients of B are in a fixed finite
set of real numbers.
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Boundedness of Klt Stable Minimal Models | 13

Theorem 3.2. Let d ∈ N, u ∈ R>0, I ⊂ R≥0 be a finite set, and � ⊂ R≥0 be a DCC set. Then there
exists a finite set J ⊂ R≥0 and a DCC set � ⊂ R≥0 depending only on d, u, I, � satisfying the
following. Assume that

• (X, B) is a projective lc pair of dimension d and B ∈ I,
• f : X → Z is a contraction with KX + B ∼R 0/Z,
• (X, B) is klt over the generic point ηZ of Z,
• A ∈ � is an effective R-divisor on X such that A is relatively semi-ample over the generic point ηZ

of Z, and
• 0 < vol(A|F) ≤ u for the general fiber F of f .

Then there exists an adjunction formula

KX + B ∼R f ∗(KZ + BZ + MZ)

such that MZ′ = �l
i=1riMi,Z′ on some high resolution Z′ → Z, where ri ∈ J and Mi,Z′ is Cartier nef

for any i.
Moreover, if in addition (X, B) is ε-lc for some ε ∈ R>0, then the coefficients of B are in a fixed finite

set � depending only on d, u, ε, I, �.

Proof.

Step 1. By [30, Theorem 3.3], we can write

KX + B =
l∑

i=1

ri(KX + Bi)

such that

• r1, · · · , rl belong to a finite set J ⊂ R≥0 depending only on d, I,
• r1, · · · , rl are Q-linear independent and

∑l
i=1 ri = 1,

• (X, Bi) is lc and Nklt(X, Bi) = Nklt(X, B) for any i (in particular, (X, Bi) is klt over the generic point
ηZ of Z for any i),

• KX + Bi ∼Q 0/Z for any i,
• there exists q ∈ N depending only on d, I such that q(KX + Bi) is integral for any i, and
• if M and Mi are the moduli part of the adjunction formulas with respect to (X, B) and (X, Bi),

then M = ∑l
i=1 riMi.

Take F as a general fiber of f , then KF + Bi,F = (KX + Bi)|F ∼Q 0. Hence (F, Bi,F), AF is a polarized
klt Calabi–Yau pair. Since the coefficients of Bi,F are in a finite set and the coefficients of AF are
in a DCC set �, they are bounded from below away from zero. By [5, Lemma 2.48], (F, Bi,F) is δ-lc
for some positive real number δ depending only on d, I. Therefore, (F, Supp(Bi,F +AF)) belongs to a
bounded family depending only on δ, �, u by [9, Theorem 6.2]. Hence by [6, Lemma 7.2], possibly
replacing q with a bounded multiple, we can assume that q(KF + Bi,F) ∼ 0. This implies that we
can find a rational function αi on X such that q(KX + Bi) + Div(αi) is vertical over Zi. Since

q(KX + Bi) + Div(αi) ∼Q 0/Z,

we see that q(KX + Bi) + Div(αi) is the pullback of a Q-Cartier Q-divisor qLZ on Z by [14, Lemma
2.5]. Thus we have the following adjunction formula

KX + Bi ∼q f ∗(KZ + Bi,Z + Mi,Z)

where Bi,Z is the discriminant divisor and Mi,Z = LZ − KZ − Bi,Z is the moduli divisor.
By Lemma 2.10 and Lemma 3.1, there exists a positive integer p depending only on d, u, I, � such
that pMi,Z′ is Cartier nef on some high resolution Z′ → Z.

Step 2. Now we have an adjunction formula

(∗) KX + B ∼R f ∗(KZ + BZ + MZ),
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14 | M. Zhu

where BZ = ∑l
i=1 riBi,Z and M = ∑l

i=1 riMi. Let J′ = { r
p |r ∈ J}, then

MZ′ =
l∑

i=1

ri

p
(pMi,Z′ )

where ri
p ∈ J′ and pMi,Z′ is Cartier nef for 1 ≤ i ≤ l.

Step 3. In this step we prove the moreover part. Now we assume that (X, B) is ε-lc for some fixed ε ∈ R>0,
then in Step 1, we can choose (X, Bi) to be ε

2 -lc by [29, Corollary 5.5]. By the argument of the proof
of [3, Lemma 6.7] and Lemma 2.11, replacing q with a bounded multiple, we can assume that
qBi,Z is integral. Since BZ = ∑l

i=1 riBi,Z and ri’s are in a finite set, we conclude that BZ ∈ � where
� ⊂ R≥0 is a finite set. �

3.3 DCC coefficients case
Next we show that there exists an effective adjunction formula in the case that the coefficients of B are
in a fixed DCC set of real numbers.

Theorem 3.3. Let d ∈ N, u ∈ R>0 and � ⊂ R≥0 be a DCC set. Then there exists a finite set I ⊂ R≥0

depending only on d, u, � satisfying the following. Assume that

• (X, B) is a projective klt pair of dimension d and B ∈ �,
• f : X → Z is a contraction with KX + B ∼R 0/Z,
• A ∈ � is an effective R-divisor on X such that A is relatively semi-ample over the generic point ηZ

of Z, and
• 0 < vol(A|F) ≤ u for the general fiber F of f .

Then there is an adjunction formula

KX + B ∼R f ∗(KZ + BZ + MZ)

such that MZ′ = ∑l
i=1 riMi,Z′ on some high resolution Z′ → Z, where ri ∈ I and Mi,Z′ is Cartier nef

for any i.

Proof.

Step 1. Let F be a general fiber of f : X → Z. Then KF + BF := (KX + B)|F ∼R 0 and (F, BF) is a klt log Calabi–
Yau pair. By global ACC for lc thresholds [32, Theorem 1.5], since the coefficients of BF are in a
DCC set �, they are in a finite set J ⊂ R≥0 depending only on d, �. Hence if we denote Bh to be the
horizontal/Z part of B, then Bh ∈ J.

Step 2. In this step and the next step, we obtain a new pair from which preserves the horizontal part of
B over the generic point of Z but changes the vertical part of B to be reduced.
Take high log resolutions of (X, B) and Z as follows:

such that (X′, �) is log smooth, where � is the sum of reduced π-exceptional divisors and the
birational transform of Supp B. Write KX′ + B′ = π∗(KX + B). Let B̃v, B̃h be the vertical/Z′ part
and horizontal/Z′ part of the birational transform of B. Let Ev, Eh be the vertical/Z′ part and
horizontal/Z′ part of the reduced π-exceptional divisors. Then we take an open subset U′ in Z′

such that

• μ : Z′ → Z is an isomorphism on U′,
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Boundedness of Klt Stable Minimal Models | 15

• L := Z′\U′ is a reduced divisor on Z′, and
• f ′(Supp(B̃v + Ev)) ⊆ L.

Let f ′−1L be the reduction of the inverse image of L with respect to f ′ : X′ → Z′ and add f ′−1L
to �. Possibly replacing (X′, �) with a higher birational model, we can assume that the condition
(X′, �) being log smooth is preserved.

Step 3. Let �′ = B̃h + Eh + f ′−1L. Replacing J with J ∪ {1}, we have �′ ∈ J. Run an MMP on KX′ + �′ over Z′

with scaling of some ample divisor. Since over f ′−1U′, (X, B) is a weak lc model of (X′, �′), hence by
[4, Corollary 3.7], (X′, �′) has a minimal model over U′. Therefore, by [4, Theorem 1.9], the MMP
terminates over f ′−1U′ and we reach a model (W, �W) such that KW + �W ∼R 0/U′.

Step 3. Now we continue to run the MMP on KW + �W over Z′. The MMP does not modify W over U′.
Moreover, the MMP is also an MMP on KW +�W −aFW where FW is the pullback of L with respect to
W → Z′ and a > 0 is a small number. Since KW +�W −aFW is semi-ample over U′ and (W, �W −aFW)

is klt, the MMP terminates with a good minimal model V by [25, Theorem 1.2]. Let g : V → Z′′ be
the contraction induced by the semi-ample/Z′ R-divisor KV + �V and denote by μ′ the morphism
Z′′ → Z′. If we denote KV + BV as the pushdown of KX′ + B′, then Supp(�V − BV) maps into L ⊆ Z′.
Since KX′ + B′ ∼R 0/Z′, by the cone theorem, the pullbacks of KV + BV and KX + B to a common
resolution are the same. Therefore, we conclude that (V, BV) is a sub-klt pair and KV + BV ∼R 0/Z.
Let AV be the birational transform of the horizontal/Z part of A. Let G be the general fiber of
g : V → Z′′. Since over U′, (V, �V) is a small Q-factorialization of (X, B), AV is the pullback of A.
Therefore, AV is relatively semi-ample over the generic point of Z′′ and 0 < vol(AV|G) ≤ u.

Step 4. Applying Theorem 3.2 to (V, �V) over Z′′, there exists a finite set I ⊂ R≥0 depending only on d, u, J, �
such that we can write an adjunction formula

(∗) KV + �V ∼R g∗(KZ′′ + �Z′′ + MZ′′ )

such that MZ′′′ = ∑l
i=1 riMi,Z′′′ on some high resolution Z′′′ → Z′′, where ri ∈ I and Mi,Z′′′ is Cartier

nef for any i.
Since KV + �V is the pullback of KX + B over U′ ⊆ Z′, �V − BV is vertical over Z′′. Since

KV + �V ∼R KV + BV ∼R 0/Z′′,

we conclude that �V − BV is the pullback of an effective R-Cartier R-divisor PZ′′ on Z′′ by [44,
Lemma 2.11]. The adjunction formula (∗) induces an adjunction formula

(∗∗) KV + BV ∼R g∗(KZ′′ + BZ′′ + MZ′′ )

where BZ′′ := �Z′′ − PZ′′ .
Since the pullbacks of KV +BV and KX +B to a common resolution are the same, the adjunction

formula (∗∗) induces the following adjunction formula

(∗ ∗ ∗) KX + B ∼R f ∗(KZ + BZ + MZ)

where KZ + BZ + MZ is the pushdown of KZ′′ + BZ′′ + MZ′′ . �

4 Singularities of klt stable minimal models
In this section we apply the effective adjunction formula to prove Theorem 1.6. We follow the proof of
[6, Lemma 8.2].

Proof of Theorem 1.6.

Step 1. Let (X, B), A ∈ Sklt(d, �, ≤ u, v) and f : X → Z be the contraction defined by the semi-ample R-
divisor KX + B. By Theorem 3.3, there exists a finite set I ⊂ R≥0 depending only on d, u, � such
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16 | M. Zhu

that there is an adjunction formula

(∗) KX + B ∼R f ∗(KZ + BZ + MZ)

satisfying that MZ′ = ∑l
i=1 riMi,Z′ on some high resolution Z′ → Z, where ri ∈ I and Mi,Z′ is Cartier

nef for any i. By the ACC for lc thresholds [32, Theorem 1.1], the coefficients of BZ are in a DCC
set � ⊂ R≥0 depending only on d, �. Since

vol(KZ + BZ + MZ) = Ivol(KX + B) = v,

we conclude that (Z, BZ +MZ) ∈ Fgklt(dim Z, � ∪ I, v). By [6, Theorem 1.5], (Z, BZ +MZ) is generalized
δ-lc for some δ ∈ R>0 depending only on dim Z, �, I, v, hence depending only on d, �, u, v.

Step 2. If D is a prime divisor over X that is horizontal over Z, then D determines a prime divisor S over the
general fiber F of f . Since (F, BF) is a klt log Calabi–Yau pair and BF ∈ �, by [5, Lemma 2.48], (F, BF)

is τ -lc for some τ ∈ R>0 depending only on dim F and �, hence depending only on d, �. Then

a(D, X, B) = a(S, F, BF) ≥ τ .

Step 3. If D is a prime divisor over X that is vertical over Z, then we take high resolutions as follows:

such that D is a divisor on X′ and its image on Z′ is a prime divisor E. Let

KX′ + B′ = π∗(KX + B)

and

KZ′ + BZ′ + MZ′ = μ∗(KZ + BZ + MZ).

Since (Z, BZ + MZ) is generalized δ-lc,

a(E, Z′, BZ′ + MZ′ ) = a(E, Z, BZ + MZ) ≥ δ.

Therefore,

multE BZ′ ≤ 1 − δ.

By the definition of discriminant divisors, (X′, B′ + δf ′∗E) is sub-lc over the generic point of E. This
implies that

multD B′ + δ multD f ′∗E ≤ 1

and hence multD B′ ≤ 1 − δ. Thus

a(D, X, B) = a(D, X′, B′) ≥ δ.

Step 4. From the above arguments we see that (X, B) is ε-lc, where ε := min{τ , δ} depending only on
d, �, u, v. �
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Boundedness of Klt Stable Minimal Models | 17

5 Boundedness of klt stable minimal models
5.1 Lower bound on lc thresholds of strongly stable minimal models
We prove there is a uniform lower bound on lc thresholds of strongly stable minimal models with klt
singularities, which is theR-coefficient version of [6, Lemma 8.3] and the proof is similar to the one there.
The new tools applied here are the effective adjunction formula with R-coefficients (Theorem 3.3) and
uniform decomposition of generalized R-pairs (Lemma 2.16).

Theorem 5.1. Let d ∈ N, u, v, w ∈ R>0, and � ⊂ R≥0 be a DCC set. Then there exists λ ∈ R>0

depending only on d, u, v, w, � such that for any strongly stable minimal model

(X, B), A ∈ SSklt(d, �, ≤ u, v)

with vol(KX + B + A) ≤ w, the pair (X, B + λA) is lc.

Proof.

Step 1. Let (X, B), A ∈ SSklt(d, �, ≤ u, v). By Theorem 1.6, there is ε ∈ R>0 depending only on d, u, v, � such
that (X, B) is ε-lc. Since KX + B ∼R 0/Z, we have KF + BF = (KX + B)|F ∼R 0, where F is the general
fiber of f . Since A is ample over Z, (F, BF), AF is a polarized ε-lc log Calabi–Yau pair. Since the
coefficients of BF, AF are in a DCC set �, they are bounded from below away from zero.

Step 2. Let s = dim Z. If s = 0, then (X, B), A is bounded by [9, Theorem 6.2], in this case the theorem
follows from [7, Theorem 1.8]. Now we assume that s ≥ 1. By Theorem 3.3, there exists a finite
set I ⊂ R≥0 depending only on d, u, � such that there is an adjunction formula

KX + B ∼R f ∗(KZ + BZ + MZ)

satisfying that MZ′ = ∑l
i=1 μiMi,Z′ on some high resolution Z′ → Z, where μi ∈ I and Mi,Z′ is Cartier

nef for any i. By the ACC for lc thresholds [32, Theorem 1.1], the coefficients of BZ are in a DCC
set � ⊂ R≥0 depending only on d, �. Hence (Z, BZ + MZ) ∈ Fgklt(s, � ∪ I, v). By [6, Theorem 1.5],
there is a fixed finite set I′ ⊂ R>0 such that BZ ∈ I′. Therefore, (Z, BZ + MZ) ∈ Fgklt(s, I ∪ I′, v).

By Theorem 2.16, there is a fixed finite set J ⊂ R≥0 and a fixed p ∈ N such that we can
decompose KZ + BZ + MZ as follows:

KZ + BZ + MZ =
l∑

i=1

ri(KZ + Bi,Z + Mi,Z)

satisfying that

•
∑l

i=1 ri = 1 and ri ∈ J for any i,
• (Z, Bi,Z + Mi,Z) is generalized klt for any i, and
• p(KZ + Bi,Z + Mi,Z) is very ample for any i.

Step 3. Let

H :=
l∑

i=1

p(KZ + Bi,Z + Mi,Z)

and let n be a fixed positive integer such that n > max{ p
r1

, · · · , p
rl
}, then f ∗H − (KX + B) and n(KX +

B) − f ∗H are nef. Take π : Y → X as a Q-factorialization of X and write KY + BY = π∗(KX + B). Since
(X, B), A is a strongly stable minimal model, KX + B + A is ample, thus f ∗H + A is ample, which
implies that π∗f ∗H + π∗A is nef and big. Since Y is ε-lc and since

π∗f ∗H + π∗A − KY = π∗(f ∗H − KX − B) + π∗A + BY

is pseudo-effective and the coefficients of π∗A is in the DCC set �, by [9, Theorem 4.2], there
is a bounded positive integer m such that |m(π∗f ∗H + π∗A)| is birational, hence |m(f ∗H + A)| is
birational.
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18 | M. Zhu

Step 4. Replacing m with a bounded multiple we can assume that mA ≥ 1. Pick a member

N ∈ |m(f ∗H + A)|

and then

vol(N) = vol(m(f ∗H + A))

≤ vol(m(n(KX + B) + A))

≤ (mn)dw.

For any component D of N, we have multD(N + B + mA) ≥ 1 because any component of N whose
coefficient is not an integer is a component of A. By construction,

N − (KX + B + mA) ∼ (m − 1)f ∗H + (f ∗H − KX − B)

is pseudo-effective. Applying [5, Proposition 4.4] to (X, B + mA), N, we conclude that there is c ∈
R>0 and a bounded set P depending only on d, m, n, w such that there is a log smooth couple
(X, �) ∈ P and a birational map X ��� X satisfying that

• � contains the reduced exceptional divisor of X ��� X and the support of the birational
transform of B + A + N, and

• if N is the pullback of N to X, then N · H
d−1 ≤ c for some very ample divisor H ≤ �.

Step 4. The meaning of the pullback of N to X(and similarly for other divisors) is pulling back N to a
common resolution of X, X and then pushing down to X. Note that in [5, Proposition 4.4], N is
required to be a Q-divisor, but the proof of [5, Proposition 4.4] goes through verbatim when N is

an R-divisor. Let A be the pullback of A to X, then A · H
d−1 ≤ c since N − A is pseudo-effective,

and this implies that A ≤ c.
Step 5. Let KX + B be the pullback of KX + B to X, then B ≤ 1 − ε because (X, B) is ε-lc. Therefore, there is

a fixed number λ ∈ (0, 1) such that (X, B + λA) is sub-lc as (X, B + A) is log smooth.
Since

KX + B + λA = λ(KX + B + A) + (1 − λ)(KX + B)

is ample, by negativity lemma we conclude that (X, B + λA) is lc. �

5.2 Proof of Theorem 1.5
We are now ready to prove the boundedness of stable minimal models with klt singularities. As
explained in the sketch of the proofs, given a stable minimal model (X, B), A in Theorem 1.5, the key
point is to shrink Nlc(X, B + λA) by induction.

Proof of Theorem 1.5.

Step 1. Let (X, B), A ∈ Sklt(d, �, ≤ u, v) such that (KX + B)i · Ad−i ≤ w for 0 ≤ i ≤ d, and f : X → Z be the
contraction induced by the semi-ample R-divisor KX + B. By Theorem 1.6, there exists ε ∈ R>0

depending only on d, �, u, v such that (X, B) is ε-lc.
Since KX + B ∼R 0/Z, we have KF + BF = (KX + B)|F ∼R 0, where F is the general fiber of f . Thus
(F, BF), AF is a polarized ε-lc log Calabi–Yau pair. Since the coefficients of A, B are in a DCC set �,
they are bounded from below away from zero. Therefore, by [9, Theorem 6.2], (F, Supp(BF + AF))

belongs to a bounded family.
Step 2. Let s = dim Z. If s = 0, then by Step 1, (X, B), A is bounded, hence we can assume that s ≥ 1.

By Theorem 3.3, there exists a finite set I ⊂ R≥0 depending only on d, u, � such that there is an
adjunction formula

KX + B ∼R f ∗(KZ + BZ + MZ)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2025/2/rnae293/7958390 by guest on 23 January 2025



Boundedness of Klt Stable Minimal Models | 19

satisfying that MZ′ = ∑l
i=1 μiMi,Z′ on some high resolution Z′ → Z, where μi ∈ I and Mi,Z′ is

Cartier nef for any i. By the ACC for lc thresholds [32, Theorem 1.1], the coefficients of BZ are
in a DCC set � ⊂ R≥0. Hence (Z, BZ + MZ) ∈ Fgklt(s, � ∪ I, v). By [6, Theorem 1.5], there is a finite
set I′ ⊂ R≥0 depending only on s, v, �, I, hence depending only on d, u, v, �, such that BZ ∈ I′.
Therefore, (Z, BZ + MZ) ∈ Fgklt(s, I ∪ I′, v).

By Theorem 2.16, there is a fixed finite set J ⊂ R≥0 and a fixed p ∈ N such that we can
decompose KZ + BZ + MZ as follows:

KZ + BZ + MZ =
l∑

i=1

ri(KX + Bi,Z + Mi,Z)

satisfying that

•
∑l

i=1 ri = 1 and ri ∈ J for any i,
• (Z, Bi,Z + Mi,Z) is generalized klt for any i, and
• Li := p(KZ + Bi,Z + Mi,Z) is a very ample for any i.

Step 3. Define P(t) as the image of non-lc locus of (X, B + tA) on Z, that is,

P(t) := f (Nlc(X, B + tA)).

We regard P(t) as a closed subset of Z. Now we prove the following statement Ck by induction on
k: there exists λk ∈ R>0 depending only on d, �, u, v, w such that

• dim P(λk) ≤ s − k, and
• KX + B + λkA is nef in dimension k − 1 over Z.

By [7, Theorem 1.8], there exists λ1 ∈ R>0 such that (F, BF + λ1AF) is lc. Then (X, B + λ1A) is lc
over some open subset U ⊆ Z, hence dim P(λ1) ≤ s − 1. Since A is relatively nef over Z and KX + B
is semi-ample, we conclude that KX + B + λ1A is nef in dimension 0 over Z.

Assume that the statement Ck holds and λk is chosen for Ck. We prove the statement Ck+1 in
the following steps.

Step 4. In this step we prove that there exists a fixed λk+1 ∈ R>0 such that KX + B + λk+1A is nef in
dimension k over Z.

Let H1, · · · , Hs−k be any very ample divisors in Z. Take a general member of the linear system
|Hi| and in abuse of notation, we still denote by Hi the general member. Let T = ∩s−k

i=1 Hi, Ri = f−1Hi

and S = ∩s−k
i=1 Ri = f−1T. We can write

KS + BS + λkAS = (KX + B + λkA +
s−k∑
i=1

Ri)|S,

where AS = A|S.
If KS + BS + λkAS is nef, then take λk+1 = λk and we are done. Now assume that KS + BS + λkAS is
not nef. By [16, Theorem 1.2, Corollary 1.4],

Nlc(S, BS + λkAS) = S ∩ Nlc(X, B + λkA).

Since dim P(λk) ≤ s − k, S = ∩s−k
i=1 f−1Hi, and Hi are general hypersurfaces in Z, we deduce that

Nlc(S, BS +λkAS) is contained in finitely many fibers of S → T. Let R be a (KS +BS +λkAS)-negative
extremal ray. Since KS + BS + λkAS is ample over T and KS + BS is the pullback of an ample divisor
on T, KS + BS is positive on R\{0}, which implies that R is not contained in the image of the map
of the closed cone of curves

NE(Nlc(S, BS + λkAS)) → NE(S).

By the length of extremal ray [22, Theorem 1.1(5)], there is a curve C on S generating R and
satisfying that

(KS + BS + λkAS) · C ≥ −2(d − s + k).
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20 | M. Zhu

Take a fixed positive integer

m > max{ p
r1

, · · · ,
p
rl

},

then m(KZ + BZ + MZ) − Li is ample and thus m(KX + B) − f ∗Li is nef. Therefore,

m(KX + B)|S · C ≥ f ∗L1|S · C = L1 · f (C) ≥ 1

because L1 is a very ample Cartier divisor on Z. Now we have

(
(1 + 2(d − s + k)m)(KX + B +

s−k∑
i=1

Ri)|S + λkAS

)
· C

≥(KS + BS + λkAS) · C + 2(d − s + k)m(KX + B)|S · C ≥ 0.

Let

λk+1 = λk

1 + 2(d − s + k)m
.

The above argument implies that KS + BS + λk+1AS is nef. Therefore, KX + B + λk+1A is nef in
dimension k over Z.

Step 5. Let H1, · · · , Hs−k be general members of one of the linear systems |Li| (each Hj can be in different
linear systems). Recall that m(KX + B) − f ∗Li is nef for 1 ≤ i ≤ l, thus m(s − k)(KX + B) − ∑s−k

i=1 f ∗Hi

is nef. By Lemma 2.18, we have the following inequality:

(∗) ((1 + m(s − k))(KX + B) + λk+1A)d−s+k · f ∗H1 · . . . · f ∗Hs−k ≥ 0.

Step 6. In this step we prove that after replacing λk+1 with a smaller number, dim P(λk+1) ≤ s − k − 1 and
hence Ck+1 is satisfied.
Let Q1, · · · , Qs−k be general members of the linear system |L1|. Abusing notation denote T =
∩s−k

i=1 Qi, Ri = f ∗Qi and S = ∩s−k
i=1 Ri = f−1T. We can write

KS + BS + λk+1AS = (KX + B + λk+1A +
s−k∑
i=1

Ri)|S,

where AS = A|S.

• Since KX+B+λk+1A is nef in dimension k over Z, KS+BS+λk+1AS is nef. We claim that KS+BS+tAS

is ample for any t ∈ (0, λk+1): Fix t ∈ (0, λk+1). Since KS + BS is the pullback of an ample divisor
on T and AS is ample over T, there is a sufficiently small 0 < t′ < t such that KS + BS + t′AS is
ample. Then KS +BS + tAS is a positive linear combination of KS +BS + t′AS and KS +BS +λk+1AS,
which implies that KS + BS + tAS is ample.
Therefore, replacing λk+1 with λk+1

2 we can assume that KS +BS +λk+1AS is ample. Note that the
condition KX + B + λk+1A being nef in dimension k over Z is preserved.

• Let F be the general fiber of S → T and F be the general fiber of X → Z. Since T is the complete
intersection of general hypersurfaces,

vol(AS|F) = vol(A|F) ≤ u.

• Note that

(

l∑
i=1

riLi)
s = vol(p(KZ + BZ + MZ)) = psv.
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Boundedness of Klt Stable Minimal Models | 21

If (α1, · · · , αl) is an element of the set

{(n1, · · · , nl)|ni ∈ N,
l∑

i=1

ni = s},

then the intersection number

Lα1
1 · . . . · Lαl

l

is a positive integer and bounded from above. Without loss of generality, we can assume that

Lα1
1 · . . . · Lαl

l

are fixed numbers for all

(α1, · · · , αl) ∈ {(n1, · · · , nl)|ni ∈ N,
l∑

i=1

ni = s}.

Therefore,

Ivol(KS + BS)

= Ivol((KX + B +
s−k∑
i=1

Ri)|S)

= vol((KZ + BZ + MZ +
s−k∑
i=1

Qi)|T)

=(
1
p

l∑
i=1

riLi + (s − k)L1)
k · Ls−k

1

is a fixed positive real number, say vk.
• Now we show that vol(KS + BS + λk+1AS) is bounded from above.

vol(KS + BS + λk+1AS)

= vol((KX + B + λk+1A +
s−k∑
i=1

Ri)|S)

≤ vol(((1 + m(s − k))(KX + B) + λk+1A)|S)
=((1 + m(s − k))(KX + B) + λk+1A)d−s+k · (f ∗L1)

s−k

≤((1 + m(s − k))(KX + B) + λk+1A)d−s+k · (m(KX + B))s−k

is bounded from above because (KX + B)i · Ad−i ≤ w for 0 ≤ i ≤ d. The first inequality follows
from the nefness of m(s−k)(KX+B)−∑s−k

i=1 Ri. The second inequality follows from the inequality
(∗) in Step 5.

The above argument implies that

(S, BS), λk+1AS ∈ SSklt(d − s + k, � ∪ λk+1�, ≤ λd−s
k+1u, vk).

Hence we can apply Theorem 5.1 to (S, BS), λk+1AS. Replacing λk+1 with a smaller fixed number,
we can assume that (S, BS + λk+1AS) is lc. By inversion of adjunction [24, Theorem 0.1] or [40],
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we conclude that (X, B + λk+1A) is lc near S. Since S = f−1T and T is the complete intersection of
(s − k) general hypersurfaces, we deduce that dim P(λk+1) ≤ s − k − 1, hence Ck+1 is satisfied.

Step 7. In this step we prove that there exists a fixed λ ∈ R>0 such that (X, B + λA) is lc and KX + B + λA
is globally nef.

By induction on k, Cs is satisfied for some fixed λs ∈ R>0. Then (X, B + λsA) is lc over the
complement of a finite set of closed points of Z because dim P(λs) ≤ 0.

If KX + B +λsA is nef, then let λ = λs. If KX + B +λsA is not nef, let R be a (KX + B +λsA)-negative
extremal ray. Repeating the process in Step 4, there is a curve C generating R and satisfying that

(KX + B + λsA) · C ≥ −2d

and

m(KX + B) · C ≥ 1.

Hence

((1 + 2md)(KX + B) + λsA) · R ≥ 0.

This argument implies that

(1 + 2md)(KX + B) + λsA

is nef. Let λ = λs
1+2md , then KX + B + λA is nef.

The same argument as in Step 6 implies that after replacing λ with λ
2 , KX + B + λA is ample.

Therefore,

(X, B), λA ∈ SSklt(d, � ∪ λ�, ≤ λd−su, v).

Moreover,

vol(KX + B + λA) = (KX + B + λA)d

is bounded from above because (KX + B)i · Ad−i ≤ w for 0 ≤ i ≤ d. By Theorem 5.1, after replacing
λ with a smaller fixed number, we can assume that (X, B + λA) is lc.

Step 8. In this step we finish the proof. Since (X, B) is ε-lc, (X, B + λ
2 A) is ε

2 -lc. Since the coefficients of
B + λ

2 A is in the DCC set � ∪ λ
2 �, there is a fixed N ∈ N such that |N(KX + B + λ

2 A)| is birational
by [32, Theorem 1.3]. Thus |KX + (2d + 1)N(KX + B + λ

2 A)| is birational by [31, Lemma 2.3.4]. Since
vol(KX +B+ λ

2 A) is bounded from above, we conclude that (X, B+ λ
2 A) is log birationally bounded

by [31, Theorem 3.1]. Note that KX + B + λ
2 A is ample, thus (X, B + λ

2 A) and hence (X, B), A belongs
to a bounded family by [32, Theorem 1.6]. �

Remark 5.2. The condition “vol(A|F) ≤ u” in Theorem 1.5 can be removed: applying [8, Lemma
4.12], we have

(KX + B)dim Z · Ad−dim Z = Ivol(KX + B) vol(A|F),
thus vol(A|F) ≤ w

v .

5.3 Proof of Theorem 1.7
In this subsection we first generalize [19, Theorem 1.3] to the generalized pair case. Then we apply
Theorem 1.5 to prove Theorem 1.7.

Lemma 5.3. Let d ∈ N, ε, v ∈ R>0, and I ⊂ R≥0 be a finite set. Then there exists a finite set J ⊂ R≥0

depending only on d, ε, v, I satisfying the following.
If (X, B + M) ∈ Fgklt(d, I, ≤ v) is a generalized ε-lc pair, then vol(KX + B + M) ∈ J.

Proof. We follow the proof of [19, Theorem 1.3].

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2025/2/rnae293/7958390 by guest on 23 January 2025



Boundedness of Klt Stable Minimal Models | 23

Step 1. Pick a generalized ε-lc pair (X, B + M) ∈ Fgklt(d, I, ≤ v) with data X′ → X and M′. Write M′ =∑l
i=1 μiM′

i, where μi ∈ I and M′
i is Cartier nef for any i. By [6, Theorem 1.2] and its proof, there

exists a bounded set of couples P depending only on d, I, v such that there exists a log smooth
couple (X, �) ∈ P and a birational map π : X ��� X satisfying the following:

• � contains the exceptional divisors of π and the support of the birational transform of B,
• each M′

i descends to X as Mi, and
• A − ∑l

i=1 μiMi is pseudo-effective for some very ample divisor A ≤ �.

In particular, M′ descends to X as M = ∑l
i=1 μiMi and the number of Mi is bounded from above.

Let B = (1−ε)E+ B̃, where E is the sum of exceptional divisors of π and B̃ is the strict transform of
B. Since KX + B + M is ample, by negativity lemma, if D is a prime divisor on X that is exceptional
over X, then

1 ≥ a(D, X, B + M) ≥ a(D, X, B + M) ≥ a(D, X, B).

Since (X, B) is ε-lc and belongs to a bounded family, we can extract all such D and obtain a
birational model (X

′
, �

′
) that is also in a bounded family by [11, Theorem 1.2], where �

′
is the

sum of all exceptional divisors of X
′ → X and the strict transform of �. Replacing (X, �) with a

log bounded resolution of (X
′
, �

′
), we can assume that π−1 : X ��� X does not contract divisors.

We still denote B = (1 − ε)E + B̃, where E is the sum of exceptional divisors of π and B̃ is the strict
transform of B.

Step 2. Applying Noetherian induction, we can assume that there is a log smooth couple (V, �) and a
smooth projective morphism V → T onto a smooth variety, such that there is a closed point t ∈ T
so that we can identify X with Vt and � ≤ �t. Possibly taking a finite base change and shrinking
T we can assume that (V, �) is log smooth over T.

Since the coefficients of B are in a finite set I, without loss of generality, we can assume that
the number of components of B and their coefficients are fixed. Hence there exists a boundary
� on V such that we can identify �t with B.

By the argument of Step 3 and Step 4 in the proof of [6, Theorem 1.3], there exist divisors Ni

on V such that Ni|Vt
∼Q Mi. If we write N = ∑l

i=1 μiNi, then N|Vt ∼R M. Since μi’s belong to a finite
set I, without loss of generality, we can assume that μi’s are all fixed. Therefore, we regard N as
a fixed divisor on V.

Step 3. Applying [18, Theorem 1.12] to (V, �), N, we deduce that vol(KX + B + M) is fixed. Since (X, B + M)

is generalized ε-lc, B = (1 − ε)E + B̃ and X ��� X does not contract divisors, we have

vol(KX + B + M) = vol(KX + B + M).

Therefore, vol(KX + B + M) is fixed and we finish the proof. �

Proof of Theorem 1.7. Let (X, B), A ∈ Sklt(d, �, ≤ u, ≤ v) such that (X, B) is ε-lc, and let f : X → Z be the
contraction induced by the semi-ample R-divisor KX+B. By Theorem 3.2, there exist finite sets J, � ⊂ R≥0

depending only on d, u, ε, �, such that there is an adjunction formula

KX + B ∼R f ∗(KZ + BZ + MZ)

satisfying the following:

• BZ ∈ �, and
• MZ′ = ∑l

i=1 riMi,Z′ on some high resolution Z′ → Z, where ri ∈ J and Mi,Z′ is Cartier nef for any i.

Therefore, we have

(Z, BZ + MZ) ∈ Fgklt(d, J ∪ �, ≤ v).

By Lemma 2.11, (Z, BZ+MZ) is generalized δ-lc for some δ depending only on d, ε. Then Lemma 5.3 implies
that

Ivol(KX + B) = vol(KZ + BZ + MZ)
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is in a finite set depending only on d, δ, v, J, �, hence depending only on d, ε, u, v, �. Without loss of
generality, we can assume that Ivol(KX +B) = v0 for some fixed v0 ∈ R>0. Therefore, (X, B), A ∈ Sklt(d, �, ≤
u, v0), and the theorem follows from Theorem 1.5. �
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